Computing invariants and semi-invariants by means of Frobenius Lie algebras
نویسندگان
چکیده
منابع مشابه
Semi-direct Products of Lie Algebras, Their Invariants and Representations
Introduction 1 1. Preliminaries 6 2. Generic stabilisers (centralisers) for the adjoint representation 9 3. Generic stabilisers for the coadjoint representation 10 4. Semi-direct products of Lie algebras and modules of covariants 12 5. Generic stabilisers and rational invariants for semi-direct products 14 6. Reductive semi-direct products and their polynomial invariants 21 7. Takiff Lie algebr...
متن کاملInvariants of Triangular Lie Algebras
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (‘generalized Casimir operators’) are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so called special upper triangular Lie algebras. Algebraic a...
متن کاملComputation of Invariants of Lie Algebras by Means of Moving Frames
A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartan’s method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The algorithm is applied, in particular, to computation of invariants of real low-dimensional Lie algebras. A number of examples are calculated to illus...
متن کامل0 Frobenius ∞ invariants of
We construct a functor from the derived category of homotopy Gerstenhaber algebras, g, with finite-dimensional cohomology to the purely geometric category of so-called F ∞-manifolds. The latter contains Frobenius manifolds as a subcategory (so that a pointed Frobenius manifold is itself a homotopy Gerstenhaber algebra). If g happens to be formal as a L ∞-algebra, then its F ∞-manifold comes equ...
متن کاملFrobenius ∞ invariants of homotopy
We construct a functor from the derived category of homotopy Gerstenhaber algebras, g, with finite-dimensional cohomology to the purely geometric category of so-called F ∞-manifolds. The latter contains Frobenius manifolds as a subcategory (so that a pointed Frobenius manifold is itself a homotopy Gerstenhaber algebra). If g happens to be formal as a L ∞-algebra, then its F ∞-manifold comes equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2009
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2008.10.026